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Abstract: We demonstrate a second-order

neural network that has learned to distinguish

between two objects, regardless of their size or

translational position, after being trained on only

one view of each object. Using an image size of

16 x 16 pixels, the training took less than 1
minute of run time on a Sun 3 workstation.

100% recognition accuracy was achieved by the

resulting network for several test-object pairs,

including the standard T-C problem, for any

translational position and over a scale factor of 5.

The second-order network takes advantage

of known relationships between input pixels to
build invariance into the network architecture.

The use of a third-order neural network to

achieve simultaneous rotation, scale and position

invariance is described. Because of the high

level of invariance and rapid, efficient training,

initial results show higher-order neural networks

(HONNs) to be vastly superior to multi-level,

first-order networks pained by back-propagation

for applications where invariant pattern

recognition is required.

Introduction

Pattern recognition requires the nonlinear

separation of pattern space into subsets

representing the objects to be identified. Early

research into neural networks, or perceptrons,

concentrated on defining their potential for
nonlinear discrimination.l,2 It was found that a

single layer, first-order neural network can only

perform linear discrimination. However, either

multilayer, first-order networks or single layer

networks of higher order can provide the desired

nonlinear separation.2

The activation level of an output node in a

first-order neural network is determined by an

equation of the form:

Yi = O(Zj wij xj) (1)

where O is a nonlinear threshold function, the xj

are the excitation values of the input nodes, and

the interconnection matrix elements wij

determine the weight that each input is given in

the summation. A simplified diagram is shown

in Figure 1.
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Figure 1: One layer of a first-order neural
network.



The outputof nodesin a generalhigher
ordernetworkisgivenby:

Yi = e( zj wij xj + zj Zk Wijkxj Xk +
Zj Yk Z1 Wijkl xj xk Xl + ... ) (2)

A diagram of a neural network utilizing only

second-order terms is shown in Figure 2.

Higher-order neural networks (HONNs) were

evaluated in the 1960s for performing nonlinear

discrimination but were rejected as impractical

due to the combinatoric explosion of higher-
order terms. 2
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Figure 2: A second-order neural network with 4
inputs and 1 output.

At the same time, progress with multi-layer,

first-order networks was restricted by the lack of

an adequate learning rule. The advent of new

learning rules,3, 4 of which the most popular is

backward error propagation,4 has allowed a

great increase in the applications of multi-layer,

first-order networks. However, their

performance in terms of learning speed, the time

taken to learn a training set of images, and

generalization accuracy, the subsequent

recognition of a separate test set, still prohibits

their application to many practical problems.

In pattern recognition applications, one

often desires the same response for an input

image regardless of its position, size, and angular

orientation. Achieving translation, scale and

rotation invariance requires a neural network to

learn relationships between the input pixels, xj.

Note that the summation within the parenthesis in

Eq. (1) is a function of individual xj's. No

advantage is taken of any known relationships

between the xj's. Multi-layer, first-order

networks can learn invariances, but require a

great deal of training, and produce solutions that

are specific to particular patterns. As an

example, learning by back-propagation to

distinguish a "T" from a "C", invariant to

position and rotation, requires over 5000

presentations of an exhaustive training set.5

Building invariance into a HONN

Higher-order neural networks can also

perform the nonlinear discrimination required

for pattern recognition invariant to scale,
translation, and rotation, but with considerable

advantages over multi-layer, first-order

networks. First, a HONN can perform nonlinear

discrimination using only a single layer so that a

simple perceptron learning rule can be used,
leading to rapid convergence. 1 Further, the

problem of combinatoric explosion can be

overcome by building invariances into the

network architecture using information about the

relationships expected between the input xj's.6,7

The invariances achieved require no learning to

produce and apply to any input pattern learned

by the network.

As an example, translation invariance can be
built into the second-order neural network with 4

input nodes and 1 output node shown in Figure 2.

Assume that the input patterns (1 0 1 0) and

(0 1 0 1) are to be indentified as the same object.

If Wil3 -- wi24, then Yi is the same for both

inputs. In general, translation invariance

requires that:

Wijk = wi(j - k) (3)

i.e., the connections for equally spaced input

pairs are all set equal.

Combinations of invariances can similarly
be achieved. A second-order neural network

will be simultaneously invariant to scale and



translationif theweightsaresetaccordingto the
function 7

wOO,k) = w(i,(Yk-yj)/(Xk-xj)) (4)

Equation (4) implies that Wijk is set equal to

wijqc, if the slope of a line drawn between nodes

j and k equals that formed between j' and k', as

shown in Figure 3. Any object drawn in a 2-D

plane can have lines of various slopes drawn

within it. An object's relative content of lines of

different slopes does not change when it is

translated in position or scaled in size, as long as
it is not rotated.

Note that the order of angles matters, but not

which angle is measured first.

Figure 4: Translation, scale and rotation
invariance is achieved by setting all third
order weights equal for sets of inputs j, k,
and 1 which form similar triangles.

!

Figure 3: Translation and scale invariance

achieved by setting Wijk = wij_' if the slope
of the line formed by nodes j and k equals that
formed by nodes j' and k'.

Rotational invariance can be included by

using a third-order neural network, where the

output is given by the function

Yi= O(Zj Zk ZI WijklxjXk Xl) (5)

As shown in Figure 4, any three points within an

object define a triangle with included angles

(a,13,y). When the object is translated, scaled and

rotated, the three points in the same relative

positions on the object still form the included

angles (a,13,y). Therefore, invariances to all
three distortions can be achieved with a third-

order network having an interconnection
function of the form:

Wijkl = wial3y = wiyal3 = wil3yct (6)

Simulation results

We have simulated a single layer, second-

order neural network using a 16 x 16, or 256

node, input field fully interconnected to a single

output node which is thresholded with a hard

limiter. There are 256-choose-2 or 32,640 input

pairs and therefore interconnections. The

interconnection weights are constrained to follow

Eq. (4) in order to achieve invariance to scale

and translation. The weights are initially set to

zero and a perceptron learning rule is used:

Awijk = (ti - Yi) xj xk (7)"

where the expected training output, t, actual

output, y, and inputs x, are all binary. The

network is trained on just 2 distinct patterns --

only one size and one location for each pattern.

It learns to distinguish between the patterns in
less than 1 minute of run time on a Sun 3

workstation. After training, it successfully

distinguishes between all translated and scaled

versions of the two objects with 100% accuracy.

No further training is required to achieve this
invariance, as it is built into the architecture.

The system can learn to distinguish between any

two distinct patterns, and has been tested on a

variety of problems, including the T-C

problem. 2 Scale invariance of a factor of 5 has



beendemonstrated for this problem, with 100%

recognition accuracy.
Due to the limited resolution of the finite 16

x 16 input window, residual scale variance can

occur. (T,C) pairs are distinguished by their
relative content of horizontal and vertical

information. For the smallest (T,C) pair, shown

in Figure 5a, the T has 3 input pair combinations

arranged horizontally and 3 vertically, while the

C has 2 arranged horizontally and 4 vertically.

In the next larger scale of (T,C), shown in

Figure 5b, the ratio of horizontal to vertical

pixel pairs is 34:34 for the T and 26:42 for the

C. It is therefore easier to distinguish between

the smaller (T,C) pair based on their relative

horizontal/vertical content. If the system is

trained on the smaller set of letters, learning is

not pushed to the point where larger versions can

be recognized. In contrast, if large patterns are

used for training, all smaller versions are

subsequently recognized.
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Figure 5." Two different scales of T and C drawn

in a 16 x 16 pixel window.

Residual scale variance can be eliminated by

using bipolar training values and a modified
threshold function such as,

O(x)=l, ifx>K,

O(x) -- -1, if x < -K,

O(x) = 0, otherwise,

(8)

where K is some positive constant. Learning

with a sufficiently large value for K forces the

network to make a greater distinction between

the initial patterns, allowing easier discrimination

between test patterns which are subsequently

evaluated with a hard limiter. Training the

network on the smallest (T,C) pair using a value
of K = 1000 allows correct identification of all

larger test versions, without greatly increasing

the training time.

Comparison to back-propagation

The second-order neural network was

compared to a fully-connected, two layer, first-

order network containing 256 input nodes, 128

hidden nodes, 1 output node, and therefore a

comparable number (32,768) of
interconnections. The first-order network was

trained to perform scale and translation invariant

recognition of two objects, the (T,C) pair, using

a generalized back-propagation delta rule 4 with

learning rate q = 0.25 and momentum factor _ =

0.9. After being shown 100 randomly selected

pairs (out of 412 possible pairs which can be

drawn in a 16x16 window) several thousand

times, involving several days of run time on the

Sun 3, the network failed to recognize more than

half of the training set correctly. It is clear that

this is only a preliminary comparison - a more

sophisticated back-propagation model including a

version of receptive fields5 might be expected to

perform scale and translation invariant

recognition, but such a model is unlikely to

compare favorably with the speed and accuracy

demonstrated by the second-order neural
network described above.

Conclusions

Higher-order neural networks can be

designed to perform pattern recognition,

invariant to translation, scale and rotation

distortions. The large number of connections in

a HONN are used to advantage by redundantly

encoding invariant information into the network

architecture. The speed of learning with a single

layer perceptron more than compensates for the

large number of weights to be learned. Further,

as the network is only trained on one example of

each object to be recognized, most of the weights

in the network are not modified directly during



learning.Instead,setsof weightsareconstrained
to be equal, so that changing one weight

effectively changes many weights at once.

Our simulations have demonstrated that a

second-order neural network can be rapidly

trained to distinguish between two patterns

regardless of their size and translational position.

100% recognition accuracy was achieved for

several different training pattern pairs using a 16

x 16 input field size. Preliminary comparisons

show the HONN to be vastly superior to a two

layer, first-order network trained by back-

propagation in terms of learning speed and

recognition accuracy. The next step in testing

the capability of the HONN model will be to

achieve simultaneous invariance to rotation, scale

and translation by using a third order network.
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